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Abstract: We discuss two dimensional N -extended supersymmetry in Euclidean signature

and its R-symmetry. For N = 2, the R-symmetry is SO(2) × SO(1, 1), so that only an A-

twist is possible. To formulate a B-twist, or to construct Euclidean N = 2 models with

H-flux so that the target geometry is generalised Kahler, it is necessary to work with a

complexification of the sigma models. These issues are related to the obstructions to the

existence of non-trivial twisted chiral superfields in Euclidean superspace.
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1. Introduction

The construction of the topological sigma model by twisting the (2, 2) supersymmetric

sigma model pioneered in [1] and further discussed in, e.g., [2, 3], explicitly or implicitly

assumes the existence of an underlying (2, 2) Euclidean supersymmetry. In this letter we

analyse such supersymmetries and show that, strictly speaking, the R symmetry group

does not allow for both an A and a B twist, but only an A twist. In 2D Lorentzian

space, (2,2) supersymmetry has R-symmetry SO(2)× SO(2). One might expect that, after

Wick rotating so that the Lorentz group becomes SO(2), the resulting theory should have

SO(2) × SO(2) × SO(2) symmetry, allowing one to twist the SO(2) Lorentz symmetry

with the diagonal subgroup of the SO(2) × SO(2) R-symmetry to give the A-twist or the

anti-diagonal subgroup of the SO(2) × SO(2) R-symmetry to give the B-twist. However,

this Wick rotation with SO(2) × SO(2) × SO(2) symmetry gives a theory which is not

supersymmetric, so that the twisted versions would not automatically have the desired

BRST symmetry. Here we analyse (2,2) supersymmetry in Euclidean 2D space, and find

that the R-symmetry is not SO(2) × SO(2) but is instead SO(2, C) = SO(2) × SO(1, 1).

This allows an A-twist with the SO(2) subgroup of the R-symmetry, but not a B-twist.

The B-twist requires going to the complexification of the theory. Indeed, this is implicit

already in the early work on the subject. In 2D Euclidean space, left-handed and right-

handed fermions are related by complex conjugation. The B-model has different twists for

left and right-handed fermions, requiring them to be treated as independent so that one is

formally dealing with the complexified model.

These issues can be, and usually are, suppressed in the discussion of topological sigma-

models with Calabi-Yau target spaces. However, they become important in discussing

topological sigma-models with H-flux, so that the target space has Generalized Kähler

Geometry. As in the analysis of the models in [4], one needs to consider a complexified

version of the Euclidean sigma model. One place where a careful treatment of these issues

is particularly relevant is in understanding whether or not the Wess-Zumino term has the

factor of ‘i’ one would expect for a Euclidean sigma-model. Indeed, it was seen in [4]
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that some parts of the Wess-Zumino term in the twisted model are imaginary and have

an interpretation in terms of gerbes, while others are real and contribute to a complexified

Kahler class. Another place where one can see that there is a problem is in the (2,2) super-

space formulation of the sigma-models. In Lorentzian signature, the general (2,2) sigma

model can be written in terms of chiral, twisted chiral and semi-chiral superfields [10, 7].

In Euclidean signature, as we will review below, twisted chiral superfields are problematic

and there is no sensible way of continuing twisted chiral superfields to Euclidean signature,

unless one goes to the complexified model.

2. Supersymmetry algebra

The (p, q) Lorentzian (pseudo) supersymmetry algebra in 2D is given by1[5, 6]

{QI
+, QJ

+} = 2iηIJ∂++, I, J = 1, . . . , p ,

{QI′

− , QJ ′

− } = 2iηI′J ′

∂= , I ′, J ′ = 1, . . . , q , (2.1)

where the supercharges Q± = Q
†
± are Majorana-Weyl spinors of chirality ±1. Ordinary

supersymmetry corresponds to ηIJ = δIJ , ηI′J ′

= δI′J ′

while for pseudo supersymmetry

ηIJ , ηI′J ′

are arbitrary symmetric matrices, which we shall take to be invertible. (We shall

not discuss the possibility of central charges here.) The group of automorphisms of the

algebra (2.1) include transformations

QI
+ → M I

JQJ
+ : M tηM = η ,

QI′

− → M̃ I′

J ′QJ ′

− : M̃ tη′M̃ = η′ . (2.2)

To preserve the Majorana-Weyl conditions, the matrices M,M̃ are real and independent.

Thus, the group of automorphisms is (space-time × R-symmetry)

SO(1, 1) × SO(n, p − n) × SO(m, q − m) , (2.3)

where n(m) denotes the number of positive eigenvalues of η (η′). For ordinary (p, q)

supersymmetry with η = δ and η′ = δ, the group is

SO(1, 1) × SO(p) × SO(q) . (2.4)

In Euclidean signature there are no Majorana-Weyl fermions but we may use complex

Weyl fermions. Hermitian conjugation changes the chirality according to

(Q±)† = Q∓ . (2.5)

This means that we must have an equal number of left and right supersymmetries, p = q :=

N . Since the charges are now complex, the R-symmetry transformations can be generalised

to allow the matrices M in (2.2) to be complex. Then the R-symmetry transformations

are

QI
+ → M I

JQJ
+ : M tηM = η . (2.6)

1We have changed nomenclature from the original “twisted-” to “pseudo-” supersymmetry to avoid

confusion when discussing another twist below.
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This implies that the complex matrices M ∈ SO(N, C), so that in Euclidean signature, the

group of automorphisms of N -extended supersymmetry is

SO(2) × SO(N, C) . (2.7)

Note that the negative chirality supercharges transform under the complex conjugate trans-

formations

QI
− → M̄ I

JQJ
− . (2.8)

3. Twisting and sigma models

Twisting an N = 2 supersymmetric Euclidean theory in 2D involves selecting an SO(2)

subgroup of the R symmetry group and then twisting the 2D Lorentz group SO(2) with

the SO(2) R-symmetry subgroup, so that the new Lorentz group is an SO(2) subgroup of

this SO(2)×SO(2). We see from the above that the R symmetry group for the (2, 2) model

is

SO(2, C) = SO(2) × SO(1, 1) . (3.1)

There is then a unique choice of SO(2) subgroup of the R-symmetry group, and twisting

with this gives an A-twist. A B-twist is not possible for realisations of this supersymmetry,

as in going to the Euclidean theory, the second SO(2) of the Lorentzian R-symmetry has

become an SO(1, 1).

We now turn to the application of our discussion to (2,2) supersymmetric sigma mod-

els. A useful starting point is the N = 1 supersymmetric sigma-model in 4D Lorentzian

spacetime. This has a Kahler target space and SO(2) R-symmetry [11]. It can be for-

mulated in terms of chiral superfields φ, with N = 1 superspace lagrangian given by the

Kahler potential K(φ, φ̄). Dimensionally reducing from 3 + 1 dimensions on two spacelike

dimensions gives a theory in 1 + 1 dimensions with R-symmetry SO(2) × SO(2), with the

extra SO(2) arising from rotation symmetry in the two internal dimensions. Alternatively,

reducing on one space and one time dimension gives a theory in two Euclidean dimensions

with R-symmetry SO(2) × SO(1, 1), with the extra SO(1, 1) arising from Lorentz trans-

formations in the two internal dimensions. In both cases, dimensional reduction ensures

N = 2 supersymmetry in the reduced theory, and the reduction gives a natural under-

standing of the R-symmetry groups in the two cases. In both cases, the theory can be

written in N = 2 superspace in terms of chiral superfields φ and their complex conjugates,

anti-chiral superfields φ̄ satisfying the constraints

D̄±φ = 0 , D±φ̄ = 0 , (3.2)

with the standard supercovariant derivatives

{

D±, D̄±

}

= 2i∂++
=

. (3.3)

In Euclidean signature ∂++ → ∂, ∂= → ∂̄. The chirality constraints (3.2) make sense in

Euclidean signature as well as Lorentzian.
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Consider now the extension of these models to include a Wess-Zumino term. For the

N = 2 sigma model on a Lorentzian 2D world-sheet, the target space is then a bihermitian

geometry [9], recently recast as a generalised Kahler geometry [12]. The off-shell models

of [9] are formulated in N = 2 superspace with both chiral superfields φ and twisted chiral

superfields χ, which satisfy the Lorentzian constraints

D̄+χ = D−χ = 0 , D+χ̄ = D̄−χ̄ = 0 . (3.4)

The superspace lagrangian is then a generalised Kahler potential K(φ, φ̄, χ, χ̄). A complex

coordiante transformation in superspace exchanges the constraints (3.2) and (3.4). A model

in 1+1 dimensions with only twisted chiral fields is thus equal to one with only chiral

fields. The general case has semi-chiral superfields as well as chiral and twisted chiral

superfields [10].

The natural expectation would be that the version of these models with Euclidean

world-sheet should again have chiral and twisted chiral superfields. However, there is

a problem with twisted chiral superfields in superspace, as was first realised in [7]. In

Euclidean signature, the conjugation relations (D±)† = D̄∓ imply that conjugating the

constraints (3.4) give

D̄−χ = D+χ = 0 , D−χ̄ = D̄+χ̄ = 0 , (3.5)

which together with (3.4) force χ, χ̄ to be constant. If instead one takes the constraints

D̄+χ = D−χ = 0 plus their conjugates D−χ̄ = D̄+χ̄ = 0, then only the χ-independent part

of the potential K(φ, φ̄, χ, χ̄) contributes to the geometry, and this reduces to the usual

Kahler case in terms of chiral superfields only. There is one final possibility that does not

involve complexifying the twisted chiral fields. That is to have a real superfield χ satisfying

the twisted chiral constriant D̄+χ = D−χ = 0 and an independent real twisted anti chiral

superfield χ̃ satisfying D+χ̃ = D̄−χ̃ = 0. The superspace lagrangian K(φ, φ̄, χ, χ̃) then gives

an interesting (2,2) sigma-model in Euclidean space, but with a target space of indefinite

signature which is not generalised Kahler; this model will be discussed elsewhere [8].

So far we have limited the discussion to (2, 2) sigma models described by chiral and

twisted chiral fields. To describe a general (2, 2) model, semi-chiral superfields are also

needed [7, 10]. In Lorentzian signature the left and right semi-(anti)chiral superfields obey

the constraints

D̄+XL = 0 , D̄−XR = 0 ,

D+X̄L = 0 , D−X̄R = 0 . (3.6)

and there is a local formulation in terms of chiral, twisted chiral and semi-chiral superfields,

with a generalised Kahler potential K(φ, φ̄, χ, χ̄, XL, X̄L, XR, X̄R). A potential depending on

only one kind of semi-chiral superfield, K(φ, φ̄, χ, χ̄, XL, X̄L) say, does not have a standard

kinetic term for the components of XL, so that the model has a topological nature in this

sector [7].

For world-sheets of Euclidean signature, one can similarly introduce semi-chiral fields

YL, YR, but now the constraints consistent with complex conjugation are

D̄+YL = 0 , D̄−YR = 0 , D+ȲR = 0 , D−ȲL = 0 . (3.7)
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Now a generalised Kahler potential K(φ, φ̄, χ, χ̄, YL, ȲL, YR, ȲR) gives a kinetic term for the

components of the semi-chiral superfields which is non-positive, constructed from a metric

of indefinite signature. The change in the constraints means that a potential depending on

only one kind of semi-chiral superfield, K(φ, φ̄, χ, χ̄, YL, ȲL) gives a standard kinetic term

for the components of YL. The geometry of these models containing semi-chiral fields will

be discussed elsewhere.

4. Complexification

In order to formulate a Euclidean version of the supersymmetric sigma models with gener-

alised Kahler targets, or to formulate a B-twist, it is necessary to work with complexified

theories in which positive and negative chirality fields are treated as independent and are

no longer complex conjugate, as they would be in Euclidean space. The complex world-

sheet coordinates z, z̄ are treated as independent complex variables rather than as complex

conjugates (as often done in conformal field theory), and the metric

ds2 = 2dzdz̄ (4.1)

is preserved by the complexified Lorentz group

SO(2, C) ≃ C
∗ ≃ SO(2) × SO(1, 1) (4.2)

under which z → az, z̄ → a−1z̄ for a ∈ C
∗. The positive chirality supercharges Q+ are

regarded as independent of the negative chirality ones Q−, so that again we can have

(p, q) supersymmetry with algebra (2.1). The automorphisms are again of the form (2.2)

but with M I
J and M̃ I′

J ′ independent complex matrices, so that the R-symmetry group is

SO(p, C) × SO(q, C), and the full symmetry group is

SO(2, C) × SO(p, C) × SO(q, C) . (4.3)

In particular, for (2,2) supersymmetry, this group becomes

SO(2, C) × SO(2, C) × SO(2, C) (4.4)

and allows both an A-twist and a B-twist, as well as a half-twist.

In superspace, one can introduce chiral superfields φ and independent anti-chiral su-

perfields φ̄ satisfying the constraints (3.2) together with twisted chiral superfields χ and

independent twisted anti-chiral superfields χ̄ satisfying the constraints (3.4) and the super-

space lagrangian is again a generalised Kahler potential K(φ, φ̄, χ, χ̄). This is consistent

so long as φ, φ̄, χ, χ̄ are treated as independent complex fields, and gives a target geometry

which is a complexification of generalised Kahler geometry. This allows both an A-twist

and a B-twist, and it was the twisting of this complexified sigma-model that was analysed

in [4].

Similarly, one can introduce left and right semi-chiral superfields XL, XR and indepen-

dent anti-semi-chiral ones X̄L, X̄R satisfying the constraints (3.6). Then the general super-

space lagrangian is given by a generalised Kahler potential K(φ, φ̄, χ, χ̄, XL, X̄L, XR, X̄R).
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This complexified geometry gives a Euclideanisation of the standard Lorentzian signature

sigma model with generalized Kähler target geometry. From the superspace point of view,

when all fields are complexified we can have chiral, twisted chiral and semi-chiral superfields

in the model. This is necessary, e.g., to be able to discuss twisting, mirror symmetry or

T-duality in superspace. We plan to return to Euclidean (2, 2) sigma models in superspace

in a separate publication [8]
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